Simulasi Gelombang Elektromagnetik Pada Waveguide Menggunakan Metode Finite Difference Time Domain Untuk Aplikasi Radar
Keywords:
FDTD, Elektromagnetik, Waveguide, Simulasi gelombangAbstract
Electromagnetic wave simulation on waveguide has been carried out using the FDTD method. The electric field is reflected when it hits the dielectric rod and is transmitted over the canal. for metal rods, the electric field is blocked on the rod and dominant over the canal. The energy density transmitted at the end of the computational domain has been calculated and has different values according to the material used on the rod. These results can be applied to radar to detect objects using waves.
Downloads
Download data is not yet available.
References
T. Namiki. 2018. A new FDTD algorithm based on alternating-direction implicit method. IEEE Transactions on Microwave Theory and Techniques.47(10): 2003-2007
J. P. Berenger. 2007. Perfectly Matched Layer (PML) for Computational Electromagnetics. Morgan: Arizona State University.
T. P. Negara, L. Yuliawati, A. D. Garnadi, S. Nurdiati, H. Alatas. 2015, Effect of Filling-Factor on Transmittance of a Dielectric Slab Waveguide with Metallic Grating. AIP Conference Proceedings 1656. 060003
D. M. Sullivan. (2000). Electromagnetic simulation using the FDTD method, Wiley-IEEE Press
D. E. Merewether. (1971). Transient Currents on a Body of Revolution by an Electromagnetic Pulse. IEEE Transactions on Electromagnetics Compability, 13(2), 42-44.
B. Enquist and A. Madja. (1977). Absorbing Boundary Conditions for The Numerical Simulations of Waves. Mathematics of Computations, 31, 629-651.
P. Mur. (1981). Absorbing Boundary Conditions for Difference Approximations of The Time Domain Electromagnetic Field equation. IEEE Transactions on Electromagnetics Compability, 23(4), 377-382.
E. L. Lindman. (1987). Free Spaces Boundary Conditions for The Time Dependent Wave Equation. Journal of Computational Physics, 18, 66-78.
J.P. Berenger. (1994). A Perfectly Matched Layer for The Absorption of Electromagnetic Waves. Journal of Computational Physics, 114, 185-200.
A. F. Chan. (2006). ―The Finite Difference Time Domain Method for Computational Electromagnetics‖. Dissertasi. University of Southern Queensland.
J. P. Berenger. 2007. Perfectly Matched Layer (PML) for Computational Electromagnetics. Morgan: Arizona State University.
T. P. Negara, L. Yuliawati, A. D. Garnadi, S. Nurdiati, H. Alatas. 2015, Effect of Filling-Factor on Transmittance of a Dielectric Slab Waveguide with Metallic Grating. AIP Conference Proceedings 1656. 060003
D. M. Sullivan. (2000). Electromagnetic simulation using the FDTD method, Wiley-IEEE Press
D. E. Merewether. (1971). Transient Currents on a Body of Revolution by an Electromagnetic Pulse. IEEE Transactions on Electromagnetics Compability, 13(2), 42-44.
B. Enquist and A. Madja. (1977). Absorbing Boundary Conditions for The Numerical Simulations of Waves. Mathematics of Computations, 31, 629-651.
P. Mur. (1981). Absorbing Boundary Conditions for Difference Approximations of The Time Domain Electromagnetic Field equation. IEEE Transactions on Electromagnetics Compability, 23(4), 377-382.
E. L. Lindman. (1987). Free Spaces Boundary Conditions for The Time Dependent Wave Equation. Journal of Computational Physics, 18, 66-78.
J.P. Berenger. (1994). A Perfectly Matched Layer for The Absorption of Electromagnetic Waves. Journal of Computational Physics, 114, 185-200.
A. F. Chan. (2006). ―The Finite Difference Time Domain Method for Computational Electromagnetics‖. Dissertasi. University of Southern Queensland.
Downloads
Published
2021-10-17
How to Cite
Negara, T. P., Erniyati, E., & Ismangil, A. (2021). Simulasi Gelombang Elektromagnetik Pada Waveguide Menggunakan Metode Finite Difference Time Domain Untuk Aplikasi Radar. Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 1, 147–154. Retrieved from https://aau.e-journal.id/senastindo/article/view/98
Issue
Section
Articles