Analysis of WhatsApp Mod User Awareness Information Security with Static Analysis Methods and Quantitative Methods
DOI:
https://doi.org/10.54706/senastindo.v3.2021.128Keywords:
WhatsApp, WhatsApp Mod, Security, InformationAbstract
Increasing technological developments make the use of technology in the world also
increase and have a good or bad impact on the security of information that exists in cyberspace, this existing information security can be spread and accessed by irresponsible people by taking advantage of security gaps from every information media that exist in cyberspace, one of the gaps that allows for crimes to occur by utilizing unofficial applications where the application offers more attractive features so that users want to use the application. Applications that are widely used include the type of social chat network, where in this case the theme of WhatsApp mod users is raised, where the WhatsApp mod offers several features that do not exist in the official WhatsApp application on the Android platform. This can be one of the gaps where application development is not carried out officially, where data and information disseminated through the WhatsApp mod communication media cannot be guaranteed. Therefore, this research is expected to provide a percentage value related to the level of awareness of WhatsApp users which can be used as learning related to existing information security by paying attention to the results of static analysis related to security holes in the WhatsApp mod application.
Downloads
References
G. M. Zamroni, R. Umar, and I. Riadi, “Analisis Forensik Aplikasi Instant Messaging Berbasis Android,” vol. 2, no. 1, pp. 102–105, 2016, [Online]. Available: http://ars.ilkom.unsri.ac.id.
N. Anwar and I. Riadi, “Analisis Investigasi Forensik WhatsApp Messanger Smartphone Terhadap WhatsApp Berbasis Web,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 3, no. 1, p. 1, 2017, doi: 10.26555/jiteki.v3i1.6643.
“WhatsApp MOD | Journal of the International Child Neurology Association.”
https://jicna.org/index.php/journal/whatsapp-mod (accessed Jan. 06, 2021).
C. Hanifurohman and D. D. Hutagalung, “Analisis Statis Menggunakan Mobile Security Framework Untuk Pengujian Keamanan Aplikasi Mobile E-Commerce Berbasis Android,” Sebatik, vol. 24, no. 1, pp. 22–28, 2020, doi: 10.46984/sebatik.v24i1.920.
Sugiyono, “Metode Penelitian Manajemen. ALFABETA. Bandung,” ALFABETA, 2014.
Sugiyono, “Prof. Dr. Sugiyono. 2018. Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.,” Prof. Dr. Sugiyono. 2018. Metod. Penelit. Kuantitatif, Kualitatif, dan R&D. Bandung Alf., 2018.
D. N. J. Arum and Anie, S t a t i s t i k d e s k r i p t i f & r e g r e s i l i n i e r b e r g a n d a d e n g a n s p s s. 2012.
IBM, “Statistik SPSS - Gambaran Umum | IBM.” https://www.ibm.com/products/spss-statistics (accessed Jan. 08, 2021).
S. Zein, L. Yasyifa, R. Ghozi, E. Harahap, F. Badruzzaman, and D. Darmawan, “Pengolahan dan Analisis Data Kuantitatif Menggunakan Aplikasi SPSS,” J. Teknol. Pendidik. dan Pembelajaran, vol. 4, no. 1, pp. 1–7, 2019.
T. A. Cahyanto, V. Wahanggara, and D. Ramadana, “Analisis dan Deteksi Malware Menggunakan Metode Malware Analisis Dinamis dan Malware Analisis Statis,” Justindo, J. Sist. Teknol. Inf. Indones., vol. 2, no. 1, pp. 19–30, 2017, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JUSTINDO/article/view/1037.
R. Adenansi and L. A. Novarina, “Malware dynamic,” J. Educ. Inf. Commun. Technol., vol. 1, no. 1, pp. 37–43, 2017.
L. Song, H. Huang, W. Zhou, W. Wu, and Y. Zhang, “Learning from big malwares,” Proc. 7th ACM SIGOPS Asia-Pacific Work. Syst. APSys 2016, 2016, doi: 10.1145/2967360.2967367.
R. Masri and M. Aldwairi, “Automated malicious advertisement detection using VirusTotal, URLVoid, and TrendMicro,” 2017 8th Int. Conf. Inf. Commun. Syst. ICICS 2017, pp. 336–341, 2017, doi: 10.1109/IACS.2017.7921994.
Abraham A., “GitHub - MobSF / Mobile-Security-Framework-MobSF: Mobile Security Framework (MobSF) adalah aplikasi seluler otomatis all-in-one (Android / iOS / Windows) pengujian pena, analisis malware, dan kerangka kerja penilaian keamanan yang mampu melakukan statis dan analisis dinamis.” https://github.com/MobSF/Mobile-Security-Framework-MobSF (accessed Jan. 22, 2021).