Re-Fake: Klasifikasi Akun Palsu di Sosial Media Online menggunakan Algoritma RNN
DOI:
https://doi.org/10.54706/senastindo.v3.2021.139Kata Kunci:
Klasifikasi, Akun Palsu, Recurrent Neural Network, Deep LearningAbstrak
Online Social Network (OSN) adalah aplikasi social media yang memungkinkan komunikasi publik dan berbagi informasi. Namun, akun palsu di OSN dapat menyebarkan informasi palsu dengan sumber yang tidak diketahui. Ini adalah tugas yang menantang untuk mendeteksi akun berbahaya dalam sistem OSN yang besar. Keberadaan akun palsu atau akun yang tidak dikenal di OSN dapat menjadi masalah serius dalam menjaga privasi data. Berbagai komunitas telah mengusulkan banyak teknik untuk menangani akun palsu di OSN, termasuk teknik hitam-putih berbasis aturan hingga pendekatan pembelajaran. Oleh karena itu, dalam penelitian ini kami mengusulkan model klasifikasi menggunakan RNN untuk mendeteksi akun palsu secara akurat dan efektif. Kami melakukan penelitian ini dalam beberapa langkah, termasuk mengumpulkan dataset, pra-pemrosesan, ekstraksi, melatih model kami menggunakan RNN. Berdasarkan hasil eksperimen, model yang kami usulkan dapat menghasilkan akurasi yang lebih tinggi daripada model pembelajaran konvensional.