THERMAL IMAGE-BASED OBJECT SEGMENTATION USING DEEP LEARNING (PRE-TRAINED RESNET 101)

Authors

  • Taufiq Hidayat Harahap Universitas Nurtanio Bandung
  • Arief Suryadi Satyawan Badan Riset dan Inovasi Nasional
  • Ike Yuni Wulandari Universitas Nurtanio Bandung
  • Heni Puspita Universitas Nurtanio Bandung

DOI:

https://doi.org/10.54706/senastindo.v4.2022.211

Keywords:

Autonomous vehicle, image processing and Jetson AGX Xavier.

Abstract

Currently, the car is one of the means of transportation that is widely used by many people and it has become a necessity to have a car to help users move more easily. Car technology continues to be developed by experts, including steering aid systems and safety for car users, such as automatic reading of objects and road boundaries that can be useful for both things. This system was built using the Fully Convolutional Network (FCN) method with Residual Neural Network (ResNet) architecture, and also Image Processing as signal processing with image input, and with a thermal Flir camera as vehicle input data. The data generated by this thermal camera is labeled first and then trained so that it can segment objects correctly according to their classification. In this study, the extraction accuracy of the training generated by the autonomous vehicle feature can reach 96.27% for ResNet 101 with a resolution of 640x480 pixels. As for suggestions for development to be even better in terms of segmentation, namely by using more training data than is used now and shooting locations for datasets in different places from the current research.

Downloads

Download data is not yet available.

References

Segmentasi semantik untuk klasifikasi citra.” https://arifiany.medium.com/segmentasi- semantik-untuk-klasifikasi-citra-a004b3906250 (diakses tanggal 30 september 2022)

Apa itu Machine Learning?” https://www.dicoding.com/blog/machine-learning-adalah/ (diakses tanggal 30 september 2022).

Sadly Syamsudin, Guritnaningsih, Dewi Maulina. 2019. Literatur Riview Artificial Intelelligence Deteksi Hasil ctscan Paru-paru Pasien Terjangkit Covid 19. Diakses pada 01 September 2022.

Gonzales, R.C., dan Woods, R.E. 2022. Digital Image Processing. Prentice hall New Jersey. Diakses pada pada tanggal 01 september

“Residual Networks (Resnet) mengenai apa itu resnet dan penjelesan menganai resnet101 https://www.geeksforgeeks.org/residual-networks-resnet-deep-learning/ (diakses tanggal 01 September 2022)

Visual Studio Code https://www.codepolitan.com/visual-studio-code-list-ekstensi- pendukung-css. Diakses pada 16 Juli 2022.

Tjahjono, Dedy Abdullah, Ari Manik. 2018. Kelalaian Manusia (Human Error) Dalam Kecelakaan Lalu Lintas, Diakses pada 12 Agustus 2022.

Vladimir Puzyrev. 2018. Deep Learning Electromagnetic Inversion with Convolutional Neural Networks. Curtin University.

Murphy, K.P. 2012. Machine Learning: a probabilistic perspective. MIT press

Downloads

Published

2022-10-31

How to Cite

Harahap, T. H., Satyawan, A. S., Wulandari, I. Y., & Puspita, H. (2022). THERMAL IMAGE-BASED OBJECT SEGMENTATION USING DEEP LEARNING (PRE-TRAINED RESNET 101). Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 4, 344–352. https://doi.org/10.54706/senastindo.v4.2022.211

Most read articles by the same author(s)

1 2 3 > >>