FACE CLASSIFICATION OF IN 360 DEGREE IMAGES (FISH EYE) USING TENSORFLOW

Authors

  • Muhammad Fajar Sutejo Universitas Nurtanio
  • Arief Suryadi Satyawan Badan Riset dan Inovasi Nasional
  • Sri Desy Siswanti Universitas Nurtanio Bandung

DOI:

https://doi.org/10.54706/senastindo.v4.2022.213

Keywords:

Image Classification, Face Classification, Deep learning, Convolutional Neural Network, Tensorflow, Camera 360.

Abstract

Technology knows no boundaries, in fact it always shows new developments, one of which is classification in pictures. Human face classification is a method used to distinguish the characteristics of a person's facial pattern. The face classification system is an application that can find out a person's face according to the human face image that has been trained and stored in the machine's database. It is hoped that this application system can work well for classifying human faces in 360˚ image formats that have significant distortion

Classification of human faces can be done in various ways, one of which is the Convolutional Neural Network (CNN) method using Tensorflow. This final project is carried out using 5 classifications of human face datasets totaling 6600 images that have been trained with an image size of 180 x 180 using a 360˚ camera and the Python programming language.

The classification of human faces in 360˚ (fish eye) images was successfully carried out with a percentage of 65% true detection and 35% false detection from the total 135 images that have been tested. In further research, other deep learning methods can be used to obtain better classification accuracy

Downloads

Download data is not yet available.

References

Ilahiyah, S., & Nilogiri, A. (2018). Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 3(2), 49-56.

Rahim, A., Kusrini, K., & Luthfi, E. T. (2020). Convolutional Neural Network untuk Kalasifikasi Penggunaan Masker. Inspiration: Jurnal Teknologi Informasi dan Komunikasi, 10(2), 109-115.

Salawazo, V. M. P., Gea, D. P. J., Gea, R. F., & Azmi, F. (2019). Implementasi Metode Convolutional Neural Network (CNN) Pada Peneganalan Objek Video Cctv. Jurnal Mantik Penusa, 3(1.1).

Fadlia, N., & Kosasih, R. (2020). Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). Jurnal Ilmiah Teknologi dan Rekayasa, 24(3), 207-215.

Yusuf, A., Wihandika, R. C., & Dewi, C. (2019). Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional Neural Network. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Downloads

Published

2022-10-31

How to Cite

Sutejo, M. F., Satyawan, A. S., & Siswanti, S. D. (2022). FACE CLASSIFICATION OF IN 360 DEGREE IMAGES (FISH EYE) USING TENSORFLOW. Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 4, 365–375. https://doi.org/10.54706/senastindo.v4.2022.213