RECONSTRUCTION OF TWO-DIMENSIONAL OBJECTS USING RANSAC MODIFICATION
DOI:
https://doi.org/10.54706/senastindo.v4.2022.203Keywords:
LiDAR, Python, RANSAC (random sample consensus).Abstract
Abstract—RANSAC (Random Sample Consensus) can be used as mathematical model parameters of a set of observed data contains inlier and outlier data. In manufacture can also be used to build exact line equations from a number of data, by validating the data by looking at the inlier and outlier data of a project being worked on. To create a program in making this final project, the author uses two-dimensional data that is processed by LiDAR (Light Detection and Ranging), the author conducts data collection and research on the performance of two-dimensional object reconstruction using RANSAC modifications in Python. In the first experiment using data from LiDAR detection, the authors limit that the variable value of the residual threshold is above 3000, so it can be expressed as an imperfect image, from the first test it is produced with 92.85% perfect data, while for the second test it gets 52% data. Perfect. Reconstruction of 2D objects from LiDAR data can be validated using the RANSAC method. Ransac method is used to build the exact equation of the line from a number of data. So that the generated line can be a reference whether the amount of data to be observed is a correct 2-dimensional object reconstruction. How to validate by looking at the suitability of the inlier and outlier data from the RANSAC line equation. Inliers data will indicate whether the pattern of the reconstruction data is appropriate.
Downloads
References
K.G Derpanis. 2020. Overview of the RANSAC Algorithm. Diakses pada 30 Juni 2022.
S.F. Pane, R.M. Awangga, and M. Az. 2018. Klasifikasi Data Lokasi Barang Menggunakan Region Of Interest (ROI) Dan Algoritma Ransac. Diakses pada 30 Juni 2022.
O. Kaspi, A. Yosipof, and H. Senderowitz. 2017. Algoritma RANdom SAmple Consensus (RANSAC) untuk material-informatika: aplikasi untuk sel surya fotovoltaik. Diakses pada 30 Juni 2022.
D.A Jatmiko and S.U Prini. 2020. Study and Performance Evaluation Binary Robust Invariant Scalable Keypoints (BRISK) for Underwater Image Stitching. Diakses pada 30 Juni 2022.
D. Barath and J Matas. 2018. Graph-Cut RANSAC. Diakses pada 30 Juni 2022
Edi. 2020. Mengenal Raspberry Pi Komputer Papan Tunggal Seukuran Credit Card. Diakses pada 30 Juni 2022.
Hosting, Jagoan. 2021. Bahasa Pemrograman Python: Pengertian, Contoh, dan Kegunaan. Diakses pada 30 Juni 2022.
Diagram kartesius. https://lovelyristin.com/apa-yang-dimaksud-diagram-kartesius. Diakses pada 13 juli 2022.
Inlier dan Outlier. https://www.researchgate.net/figure/The-performance-of-RANSAC-for-line-fitting-82_fig18_323863727. Diakses 14 September 2022.
Residual Threshold. https://www.konsultanstatistik.com/2021/04/apa-itu-residual-pada-regresi-linear.html. Diakses pada 14 September 2022.
Memory SD Card. https://www.ukmagicstore.com/product/sandisk-a1-flash-cards-class-10-memory-card-128gb-micro-sd-card-32gb-tf-card-64gb-tarjeta-micro-sd-16gb-microsd-carte-sd/. Diakses pada 25 juli 2022.
Power supply. https://www.amazon.ca/Official-Raspberry-Pi-Supply-Output/dp/B07W8XHMJZ. Diakses pada 25 Juli 2022.
Adaptor converter HDMI female to micro hdmi male type D. https://images.app.goo.gl/4MW1kk3mHTV9uV2X7. Diakses pada 25 juli 2022.
Adaptor Converter VGA female to HDMI male. https://images.app.goo.gl/EoFxtkn65nAcAavD6. Diakses pada 25 Juli 2022.
Insert SD Card. https://images.app.goo.gl/DfDuBm1Ji1AsLD3i6. Diakses pada 25 juli 2022.
Merakit peralatan pendukung pada raspberry. https://images.app.goo.gl/53oFWFzB7x92kzLj9. Diakses pada 25 juli 2022.
Raden Aditya Satria Nugraha, Pengembangan Software Aplikasi Pendeteksian Objek Berbasis Lidar (Light Detection and Ranging), 2020.
Mas’ud Abdur Rosyid, Pengembangan Software Teknik Noise Removal Point Cloud Data Lidar Dua Dimensi Untuk Aplikasi Kendaraan Listrik Otonom, 2021.