Sentiment Analysis of Public Opinion Against the Job Creation Law from Twitter Using The Naïve Bayes Classifier Method

Authors

  • Yanuar Nurdiansyah Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Jember
  • Fatchur Rahman Program Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Jember
  • Priza Pandunata Program Studi Teknologi Informasi, Fakultas Ilmu Komputer, Universitas Jember

DOI:

https://doi.org/10.54706/senastindo.v3.2021.158

Keywords:

Sentiment analysis, job creation law, TF-IDF algorithm, naive bayes classifier method

Abstract

Sentiment analysis or Opinion Mining is a way of solving a problem based on public opinion that is widely circulated on social media which is expressed in text form. Sentiment analysis is very helpful for the government / an agency in knowing public opinion about a policy that has just been issued without using conventional survey methods. The sentiment analysis carried out focuses on trending tweet topics on Twitter with trending topics on October 5 to 10 are #Omnibuslaw, #tolakruuciptakerja, #UUCiptaKerja, and #tolakomnibuslaw, and the trending topic on November 21 and 22 is "obl makmurkan buruh" . The sentiment analysis process is carried out after the data is obtained at the data crawling stage, followed by word cleaning in the preprocessing process, and word weighting with the TF-IDF algorithm. Sentiment analysis using the naive bayes classifier method aims to obtain a classification of public opinion on the job creation law on twitter. There are two classes in this study, there are positive and negative classes. The 2000 dataset consisting of 1400 tweets that have negative sentiments & 600 positive tweets used will be divided between training data and testing data with a ratio of 60%: 40%, 70%:30%, 80%:20%, and 90 %:10%. From the evaluation results on sentiment analysis regarding public opinion on the copyright law on Twitter, the highest accuracy value is 94% with training data used at 90%, testing data at 10%. In its implementation, the results of the sentiment test show that negative sentiment results are higher than positive sentiment.

Downloads

Download data is not yet available.

References

Mukaromah, Vina Fadhrotul. 2020. “Ini Pro Kontra Yang Muncul Setelah Omnibus Law UU Cipta Kerja Disahkan Halaman All - Kompas.Com.”2020. [serial on line] https://www.kompas.com/tren/read/2020/10/07/143101665/ini-pro-kontra-yang-muncul-setelah-omnibus-law-uu-cipta-kerja-disahkan?page=all [15 Oktober 2020].

Syam, Muh. Taufiq. 2020. “OPINI: Deviasi Informasi Media Sosial Di Masa Pandemi | IAIN PAREPARE.” 2020. [serial on line] https://www.iainpare.ac.id/opini-deviasi-informasi-media-sosial-di-masa-pandemi/ [16 Oktober 2020]

Karina, Fera dkk. 2018, Memaksimalkan Penggunaan Media Sosial Dalam Lembaga Pemerintah, Jakarta: Direktorat Jenderal Informasi dan Komunikasi Publik, Kementerian Komunikasi dan Informatika.

Suprapto Arifin, Hadi, Weny Widyowati, and Dan Taty Hernawaty. 2017. “Freedom of Expression di Media sosial Bagi Remaja Secara Kreatif dan Bertanggung Jawab: Bagi Siswa SMA AL-ma’soem Rancaekek DAN SMA Muhammadiyah Pangandaran.” Jurnal Pengabdian Kepada Masyarakat. 1(5): 332-337.

Riski, Wahyu Nova, and Yohanes Thianika Budiarsa. 2020. “Online Political Communication : An Overtime Analysis of Online Political Talk on Twitter During the 2019 Indonesian Presidential Election Campaign.” Jurnal Komunikasi Dan Media 01 (01): 1–17. http://journal.unika.ac.id/index.php/jkm/article/view/2845/pdf.

Emeraldien, Fikry Zahria, Rifan Jefri Sunarsono, & Ronggo Alit. 2019. “Twitter Sebagai Platform Komunikasi Politik Di Indonesia” 14 (1): 21–30.

Rozi, Imam, Sholeh Pramono, and Erfan Dahlan. 2012. “Implementasi Opinion Mining (Analisis Sentimen) Untuk Ekstraksi Data Opini Publik Pada Perguruan Tinggi.” Jurnal EECCIS 6 (1): 37–43.

Nurdiansyah, Yanuar, Saiful Bukhori, & Rahmad Hidayat. 2018. “Sentiment Analysis System for Movie Review in Bahasa Indonesia Using Naive Bayes Classifier Method.” Journal of Physics: Conference Series 1008 (1). https://doi.org/10.1088/1742-6596/1008/1/012011.

Pang, B., & Lee, L.(2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 1 (2): 91–233. https://doi.org/10.1561/1500000001.

Sundara, Tri A, Sherly Ekaputri Arnas, and Sotar. 2020. “Naïve Bayes Classifier Untuk Analisis Sentimen Isu Radikalisme.” Prosiding Seminar Nasional Sistem Informasi Dan Teknologi (SISFOTEK) 4 (1): 93–98.

Nurjanah, Winda Estu, Rizal Setya Perdana, & Mochammad Ali Fauzi. 2017. “Analisis Sentimen
Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat Pada Media Sosial Twitter Menggunakan Metode K-Nearest Neighbor Dan Pembobotan Jumlah Retweet.” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya 1 (12): 1750–57.

Lestari, Agnes Rossi Trisna, Rizal Setya Perdana, & M Ali Fauzi. 2017. “Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Näive Bayes Dan Pembobotan Emoji.” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer 1 (12): 1718–24. http://j-ptiik.ub.ac.id.

Lilya Susanti. 2016, Metode Penelitian, Malang: Departemen Riset Teknologi dan Pendidikan Tinggi Universitas Brawijaya

Downloads

Published

2021-12-21

How to Cite

Nurdiansyah, Y., Rahman, F., & Pandunata, P. (2021). Sentiment Analysis of Public Opinion Against the Job Creation Law from Twitter Using The Naïve Bayes Classifier Method. Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 3, 201–212. https://doi.org/10.54706/senastindo.v3.2021.158